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A new ring-shaped potential and its dynamical 
invariance algebra 

C Quesnet 
Service de Physique Theorique et MathCmatiGue CP 229, Universite Libre de Bruxelles, 
Bd du Triomphe, 8-1050 Brussels, Belgium 

Received 9 March 1988 

Abstract. A new ringshaped potential, obtained by replacing the Coulomb part of the 
Hartmann potential by a harmonic oscillator term, is investigated. The Schrodinger 
equation is solved in spherical, circular cylindrical, prolate and oblate spheroidal coordin- 
ates. As in the case of the Hartmann potential, the ‘accidental’ degeneracies occurring in 
the spectrum are shown to be due to an su(2) dynamical invariance algebra. This establishes 
a close connection between both ringshaped potentials. 

1. Introduction 

In the spectra of some quantum mechanical systems, there appear ‘accidental’ 
degeneracies, i.e. degeneracies not connected with obvious geometrical symmetries of 
the Hamiltonian, such as rotational invariance in the case of central potentials. Such 
‘accidental’ degeneracies are often due to the existence of a dynamical invariance 
algebra. Two well known examples are the hydrogen atom and the oscillator, whose 
degeneracies were explained a long time ago by an so(4) and su(3) dynamical invariance 
algebra respectively (Fock 1935, Bargmann 1936, Jauch and Hill 1940). Ever since, 
dynamical invariance algebras have been determined for many systems exhibiting 
‘accidental’ degeneracies (see, for example, Louck er a1 1973, Moshinsky er a1 1975, 
Moshinsky and Patera 1975, Quesne 1986). For some other systems, however, the 
explanation of ‘accidental’ degeneracies by the existence of a dynamical invariance 
algebra has been questioned (Moshinsky and Quesne 1983 and references therein). 

Quite recently, much work has been devoted to the Hartmann potential (1972) due 
to its applications to ring-shaped molecules. This potential results from adding a 
repulsive potential proportional to ( r  sin e)-2 to an attractive Coulomb one. The 
Schrodinger equation is separable in both spherical and parabolic rotational coordin- 
ates (Hartmann 1972, Gerry 1986), and can also be solved via the Kustaanheimo-Stiefel 
transformation (Kibler and NCgadi 1984b). The resulting discrete spectrum exhibits 
‘accidental’ degeneracies due to an su( 2) dynamical invariance algebra (Kibler and 
Winternitz 1987). 

The purpose of the present paper is to investigate a new ring-shaped potential, 
obtained by replacing the Coulomb part of the Hartmann potential by a harmonic 
oscillator term. This potential is defined in § 2. In § 3, the corresponding energy 
spectrum, wavefunotions and integrals of motion are obtained. In § 4, the ‘accidental’ 
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3094 C Quesne 

degeneracies appearing in the spectrum are explained by the existence of an su(2) 
dynamical invariance algebra. Finally, § 5 contains the conclusion. 

2. The potential 

In spherical coordinates r, 8, p, the Hartmann potential is defined by 

where a,, stand for the Bohr radius and the ground-state energy of the hydrogen 
atom and 7, a, q are three dimensionless positive parameters. The potential originally 
considered by Hartmann (1972) corresponds to q = 1. For fixed r, V, is minimum in 
the equatorial plane ( 6  = $T).  In this plane, its minimum is given by VI, = a’&, and 
is obtained for ro = vuo. The introduction of the extra parameter q makes it possible 
to obtain the Coulomb potential for a hydrogen-like atom as a limiting case of the 
potential (2.1) by taking q = 0 and 7a’ = 2 (Kibler and Winternitz 1987). 

Let us now consider the potential 

where bo and E,  are defined in terms of a mass parameter p and some fixed angular 
frequency wo by bo = ( h/pwo)*”,  = f h w , ,  and 7, U, q are three dimensionless positive 
parameters. For q=O and (+’=2v2, we obtain the harmonic oscillator potential 

plane ( e  = &r). In this plane, its minimum is given by V,, = (+’E,, and is obtained for 
ro = 7bo .  Hence, V ,  is a ring-shaped potential, rather similar to the Hartmann one, 
except that it is a confining potential and has therefore only a discrete spectrum. In 
the next section, we shall determine the latter, as well as the corresponding wavefunc- 
tions. 

v - 1  - 2pwgr2. For q = 1 and fixed r, the potential (2.2) is minimum in the equatorial 

3. Energy spectrum and wavefunctions 

We shall henceforth adopt units such that h = p = wo = 1 and use the shorthand notation 
y = a/( 77J2). The Schrodinger equation for the potential (2.2) is 

HIC, = E$ 

where 

(3.1) 

A is the Laplacian, and E denotes the energy -- 
According to Makarov et a1 (1967), for any potential of the class 

(3.2) 

in units of hw,. 

P h ( ) , / x )  V =  ar2+-+-  
2’ x2+y’  (3.3) 

where (Y and P are any two constants and h ( y / x )  is any function of y / x ,  the Schrodinger 
equation separates not only in spherical coordinates, but also in circular cylindrical, 
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prolate spheroidal and oblate spheroidal ones. The potential in (3.2) belongs to this 
class and corresponds to 

p = 0  h = ;q774y2. (3 .4)  a = l  2 
2 Y  

To each coordinate system in which the Schrodinger equation is separable, there 
corresponds a set of two integrals of motion. Hence, for the Hamiltonian (3.2), there 
are four such sets { WI,  W2}, { X I ,  X2}, { Y , ,  YJ and {Z, ,  Z’}. It turns out, however, 
that only three of these eight operators are independent, namely the operators W,,  
W, = X I ,  and X 2 ,  defined in (A1.9) ,  (3 .17) ,  and (3.18), respectively. Since 

[WI, XI1 =[XI,  X,l= 0 [ WI, X*l# 0 (3 .5)  
they will give rise to a non-Abelian dynamical invariance algebra, thence to ‘accidental’ 
degeneracies. Since it is easier to analyse the latter in circular cylindrical coordinates, 
we shall now proceed to solve the Schrodinger equation in such coordinates. Its 
solution in the remaining three coordinate systems is given in appendices 1 and 2. 

In circular cylindrical coordinates p, z, cp (0 G p < +CO, -cc < z < +CO, 0 s cp < 2 ~ ) ,  
the Schrodinger equation (3 .1)  can be written as 

It separates into the following three differential equations: 

(d;q + m 2 ) @ (  cp) = 0 

[dI,- y2z2+(2v+ l)y]%(z) = O  

M’ (i d,pdp -7- y 2 p 2 +  2 E  - ( 2 v  + l )y  
P 

(3 .9)  

where m 2  and v are two separation constants, and we have set 

+(P ,  z, cp) = ~ ( P ) ~ ( Z ) @ ( c p )  (3 .10)  

and 

lMl =(m2+qq174y2)1’2. (3 .11)  
Single-valued, square-integrable solutions of (3 .7)-(3.9)  are obtained for m E Z, 

E.& = ( N + $ ) y  (3.12) 

V E N ,  and 

where 

N = 2n + v +  IMI n, VEN. (3.13) 
They are given by 

Qm(pC) = ( 2 T ) - 1 ’ 2  exp(imcp) (3.14) 

and 

(3 .15)  

(3.16) 
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where H ,  and Lif?I are Hermite and Laguerre polynomials, respectively (Abramowitz 
and Stegun 1965). 

The two integrals of motion can be written as (Makarov et a1 1967) 
XI = LI + qq4y2 = -a;, + qq4y2 (3.17) 

and 
x, = p: + y2z2 = -a:, + y2z2 (3.18) 

where L, and pz are the z components of the angular and linear momenta, respectively. 
The wavefunctions (3.10), henceforth denoted by 

(3.19) 

are the common eigenfunctions of the complete set of commuting operators { H, XI,  X 2 } ,  
corresponding to the eigenvalues E N ,  M 2  and (2v+ l)y,  respectively. 

In the next section we shall proceed to analyse the energy spectrum and show that 
its ‘accidental’ degeneracies are due to an su(2) dynamical invariance algebra. 

IJln”P3 z, cp) = (pzcplnvm) 

4. Accidental degeneracies and dynamical invariance algebra 

The energy spectrum, as given by (3.12) and (3.13), obviously exhibits ‘accidental’ 
degeneracies. We shall only be concerned here with the degeneracies d ( N ,  m )  for 
fixed values of N and m, i.e. those degeneracies associated with the two-dimensional 
Hamiltonian 

H I M /  = Hi + H2 (4.1) 
where 

H -I( 1 
1 - 2  P P - - P P + z + Y  P 

P 
(4.2) 

H2 = ; ( p i  + y2z2) (4.3) 
and pp = -idp, pz = -id, are the momenta canonically conjugate to p and z, respectively. 
As for the Hartmann potential, whenever the angular momentum component m is 
different from zero, there is an extra degeneracy connected with the two values In11 
and --/mI. 

From (3.12) and (3.13), it follows that 

d (  N, m )  = f( N - 1 MI - a) + 1 

N - I MI = (T mod 2. 

(4.4) 

(4.5) 
As shown in figure 1, the levels with a = 0 (or N - I MI even) have the same spectrum 
and degeneracies as a two-dimensional harmonic oscillator of frequency 2 y, and the 
same is true for the levels with a= 1 (or N-IMI odd). Hence, we shall divide the 
Hilbert space spanned by the states Invm) with a fixed m value into two subspaces 
S,, a = 0, 1, whose basis states are defined by 

where 

where (r is defined by 

Ik,k,ma) = Invm) k l ,  k2 E h! (4.6) 

(4.7) k l =  n k2 = f( v - U )  

and, on the left-hand side of (4.6), we use a round bracket notation. 



Dynamical algebra of a ring-shaped potential 3097 

* 
(IO) 

* 
(00) 

Figure 1. The energy levels of the ring-shaped Hamiltonian ( a )  against those of a two- 
dimensional harmonic oscillator ( b )  of frequency 2y.  The former are labelled by (nv), 
and the latter by ( k ,  k 2 ) .  The levels of the ring-shaped Hamiltonian with a = 0 (a = 1) are 
marked by a cross (unmarked), and can be put into one-to-one correspondence with those 
of the oscillator. 

In each subspace S,, let us construct the operators ALi, A U i ,  i = 1,2, whose action 
on the basis states (4.6) is that of boson creation and annihilation operators, i.e. 

A ~ l ( k l k 2 m a ) = ( k , + 1 ) ” 2 / k , + 1  k2 m v )  

A,,lk,k,mu) = k:/21k,  - 1 k2 m a )  
(4.8) 

and similar relations for AL2 and A,,. Going back to the old notation Invm), these 
operators have to satisfy the following relations: 

A:,lnvm) = ( n  + 1)’ /21n + 1 v m )  A,,lnvm) = n ’ / * / n  - 1 v m )  

AL,lnvm)= [ t ( v - ~ ~ + 2 ) ] ’ / ~ / n  v + 2  m )  (4.9) 

AU2l nvm) = [;( v - ~ ) ] ” ~ 1  n v - 2 m ) .  

From these relations, it follows that A:, and A,, will have the same form in both 
subspaces So and SI ,  whereas A:, and Au2 will explicitly depend on U. 

Let us start with the construction of A:]  and A , ] .  From the recursion and differential 
relations satisfied by Laguerre polynomials (Abramowitz and Stegun 1965), it follows 
that the operators B t  and B, defined by 

(4.10) 
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satisfy the relations 

Btlnvm) = [(n + l)(n + ] M I +  ~)]”~ln+ 1 vm) 

Blnvm) = [n( n + I ~ 1 ) I ’ ’ ~ l n  - 1 v m ) .  
(4.11) 

we obtain the following results for AL1 and A,]: 

ALl = (2y)”2Bt[H,+(/MI+1)y]-1’2 

A,l=(2y)”ZB[H,+( lMl-  l ) ~ ] - ” ~ .  
(4 .13)  

Let us next construct A:2 and Au2. In terms of the operators 

~ : = ( 2 y ) - ” ~ ( y z - i p , )  a, = ( 2 y ) - ’ I 2 (  yz + ip,) (4.14) 

and H2, satisfying the relations 

a:lnvm)=(v+l)”21n v + l  m )  

y - ’ ~ , 1  nvm) = (ais, + f ) l  nvm) = ( v +;)I nvm) 

a,lnvm) = ~ ’ ’ ~ l n  v - 1 m )  
(4.15) 

we get 

(4.16) 

From (4.9), it follows that 

(4.17) 

whenever 1nvm)E S,. The operator on the left-hand side of (4.17) may therefore be 
identified with the restriction HIM,, of HlMl to S,: 

) 
2 

( 2 y  A : i A , i + y ( l M ~ + a + ; )  Invm)=E,lnvm) 
i = l  

2 

H , ~ ~ , = ~ Y  C ~ L , ~ , , + y ( i ~ i + u + ; ) .  (4.18) 

Apart from an irrelevant additive constant, HIMI, has been converted into the Hamil- 
tonian of a two-dimensional oscillator of frequency 27,  hence it has an su(2) dynamical 
invariance algebra, generated by the operators 

i = l  

J,+ = A:iAu2 Juo=f(A~1A,1 -&A,2) J,- = A:2A,l 

Their action on the basis states of S,  is given by 

J,+lnvm) = [ f ( n  + l)(v - ~ ) ~ ’ * l n  + 1 v - 2  m )  

Ju0l nvm) = +[ n - f (  v - a)]1 nvm) 

~ , - I n v m > = [ + n ( v - a + 2 ) ] ~ ’ ~ 1 n - l  v + 2  m ) .  

(4.19) 

(4.20) 

All such states with a given N value belong to a single su(2) irreducible representation, 
characterised by j = +[ n + f (  v - a) ]  =a( N - IMI - a) ,  and they can be distinguished by 
the eigenvalue m, = ;[ n - ;( v - a) ]  of Jo. 
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Let us now go back to the Hilbert space spanned by the whole set of eigenstates 
of HIMI, and introduce projection operators P, onto its subspaces So.  The operators 

J+ = 2 J,+P, J o =  c J,OPu J - =  2 J,-P, (4.21) 

leave HIMI invariant, connect all its degenerate eigenstates and satisfy the commutation 
relations and Hermiticity properties of su(2) generators. Hence, they are the generators 
of the searched for su(2) dynamical invariance algebra of HiMl .  

As a final point, let us comment on the classical limit of the transformation defined 
in (4.13) and (4.16). Such a classical limit can be very easily written down by going 
back from dimensionless units to normal ones, and letting h go to zero while M goes 
to infinity. The cr-dependent terms then become negligibly small. By defining 

Q, = +p*(~: + A, )  PI = iy”’( A: - A, )  i = 1 , 2  (4.22) 

1 I 1 

,=O u = o  l J = O  

and taking (4.2), (4.3), (4.10) and (4.14) into account, we obtain 

Q2 = (2y)-’(  -p :  + y 2 z 2 ) ( p ;  + y2z2 ) - ’ / ‘  
2 2 -1 /2  p2=2YzPz(P;+Y z 1 ’ 

Equation (4.23) defines a non-bijective canonical transformation between the two 
phase spaces ( p ,  pp, z, p L )  and ( QI ,  PI, Q 2 ,  P 2 ) ,  such that the classical counterpart of 

(4.24) 
(4.1), 

H I M ,  = + ( p ;  + MZ/p2+ y 2 p 2 )  +:(PI + y 2 z 2 )  

is mapped onto the two-dimensional oscillator Hamiltonian 

x= 4 (Pf+4y2@). 
I 

(4.25) 

This mapping is two to one since both points ( p ,  ppr z ,  p z )  and ( p ,  ppr - z ,  - p L )  in the 
original phase space correspond to the same point (Ql ,  PI, Q 2 ,  P 2 )  in the new one. 
The ambiguity group (Moshinsky and Seligman 1978, 1979) of the canonical transfor- 
mation (4.23) contains the unit element and the transformation ( p ,  pp, z, p L )  + 

( p ,  pp, - z ,  - p I  ). It has two inequivalent one-dimensional irreducible representations, 
which may be labelled by the index c r = O ,  1, introduced in (4.6), and known as the 
ambiguity spin. Bijectiveness may be restored either by introducing two Riemann 
sheets in the new phase space, or by keeping a single-sheet structure but mapping 
functions f(p, p p ,  z, p L )  onto two-component functions 

labelled by the ambiguity spin cr. 

(4.23) may also be labelled by the ambiguity spin as follows: 
In quantum mechanics, the unitary representation of the canonical transformation 

(4.26) 
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where Ik,k2ma) is defined in (4.6), and Ik,k2} denotes an eigenstate of the two- 
dimensional oscillator Hamiltonian of frequency 2y. 

5. Conclusion 

In the present paper, we have introduced a new ring-shaped potential, that we may 
call a ring-shaped oscillator, and we have determined its dynamical invariance algebra. 
The latter is identical with that of the Hartmann potential, as obtained by Kibler and 
Winternitz (1987). Hence this establishes a close connection between both ring-shaped 
potentials. 

Such a link is not in itself surprising, since many relations are known to exist 
between the Coulomb and oscillator problems. For instance, they can be related by 
a canonical transformation (Moshinsky et al 1972, Moshinsky and Seligman 1981), 
and the Coulomb problem can also be reformulated in terms of a constrained four- 
dimensional oscillator (Kibler and NCgadi 1983a, b, 1984a). 

However, the addition of a non-central potential of the type ( r  sin e)-’ makes this 
connection still deeper by smoothing out many discrepancies between both problems. 
Starting with two distinct dynamical invariance algebras, namely so(4) and su(3), we 
indeed end up with the same 4 2 )  algebra. The only difference left is that the Hartmann 
Hamiltonian spectrum can be mapped in a one-to-one fashion onto a harmonic 
oscillator one, whereas the corresponding mapping is two to one for the ring-shaped 
oscillator. 

Further investigation of the relations between both ring-shaped potentials is in 
progress. We hope to report on it in a forthcoming publication. 

Appendix 1. Schrodinger equation in spherical coordinates 

In spherical coordinates r, 8, cp(0 s r < +CO, 0 s e s T ,  0 s cp < 2 ~ ) ,  the Schrodinger 
equation (3.1) can be written as 

1 1 [ -+arr2ar-- de  sin e a, -- r2  sin’ e a:, 
r’ sin e 

+ y ‘ ( r2 + L)] $ ( r, 8, cp ) = E$ ( r, 8, cp ) . 
r’ sin’ e 

It separates into (3.7) and the following two differential equations: 

de sin e de -- 
sin 8 sin’ e 

(-$drr’dr--- L ( L + l )  y2r’+2E 
r2 

where M 2  is defined in (3.11), and we have set 

 CL(^, 8, cp) = ~ ( r ) w e ) w c p ) .  

The separation constants are now m’ and L ( L +  1). 

(A l . l )  

(Al.2) 

(A1.3) 

(Al.4) 
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Single-valued, square-integrable solutions of (3.7), (Al.2), and (Al.3) are obtained 

L =   MI V E N  (A1.5) 
for m E Z, 

and E given by (3.12), where 

N = 2 n + L  n EN. 

They are given by (3.14), and the following relations: 

(Al.6) 

(Al.7) 

where Pi“’ is an associated Legendre function of the first kind, and LLL+”’) a Laguerre 
polynomial (Abramowitz and Stegun 1965). 

The integrals of motion are now (Makarov et a1 1967) 

4v4y2 1 1 
sin’ e sin e sin’ e a, sin e de -- (a:, - qv4y2) w, = L’+-= -- (A1.9) 

and 

w, = x, (Al .  10) 

where L2 is the square of the angular momentum. The wavefunctions (A1.4), to be 
denoted by +“”,,,(r, 8, cp), are the common eigenfunctions of the set of commuting 
operators {H, W, , W2},  corresponding to the eigenvalues E N ,  L( L +  1) and M 2 ,  respec- 
tively. Although, for simplicity, we use here the same notation for the quantum numbers 
as in 0 3, one should bear in mind that n and v have a different meaning in each case. 

Appendix 2. Schrodinger equation in prolate or oblate spheroidal coordinates 

In prolate spheroidal coordinates U, U, cp (1 S U < +CO, -1 G U s 1,0  s cp < 2 ~ ) ,  defined 
by 
x = a[(u2- 1)(1- U’)]”’ cos cp y = a [ ( u ’ -  1)(1- v ~ ) ] ” ~  sin cp z = auv 

(A2.1) 

the Schrodinger equation (3.1) is 

1 U,- u2 
2(u’- 2) [ -3 ( d, (u2-  1)a, +a,(1- u’)a, + ( U’ - 1 ) (  1 - U’) a;,) 

1 1 + a 2 y 2 [  U’( u 2 -  1) + u2( 1 - U’)] +z 9774~2 (-+,)lJ(u, cp) 
a U*-1 1 - v  

= W ( u ,  U, c p ) .  (A2.2) 
By setting 

+(U, U, (9) = U(U)V(U)@(cp) (A2.3) 
it separates into (3.7) for @(cp), the following equation for U(u) :  

(A2.4) 
M’ 

d,(u2 - l )d ,  -7- CT~Y’U‘(U’- 1 ) + 2 a 2 E ( u 2  - 1) - 5 
U -1 
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and a formally identical equation for V (  U). The separation constants are now m2 and 
5, and M 2  is defined in ( 3 . 1 1 ) .  

While @(q)  is again given by (3.14), where m E Z, U ( u )  and V ( u )  are obtained in 
the following form (Demeur and Reidemeister 1970): 

(A2.5) 

(A2.6) 

where n, v E N and i runs over 1 , 2 , .  . . , n + 1 .  In (A2.5) and (A2.6), the coefficients 
cs( nvilMl) are solutions of the recursion relation 

(A2.7) A,cs+l + Bscs + Cscs-l = 0 s = 0,1,  . . . , n 
where c - ~  = 0, and 

A, = 4( s + 1 ) (  s + IMI + 1) 

B, = ~ s ( s +  IMI + ~ + f -  p2)+ (IMI + l)(IM( + 2 ~  -2ya2) - 5 (A2.8) 

c, =2ya2(y-’E -2s- [MI-  v + f ) .  

The energy eigenvalues, given in (3.12) and (3.13), result from the square-integrability 
condition on U( U), imposing that Cn+l = 0 for some n E N, while the separation constant 
values i = 1 , .  . . , n + 1,  come from the compatibility condition of (A2.7). 

Two integrals of motion are now (Makarov et a1 1967) 

u2+ u2-2 
( u2 - 1) (  1 - u2) 

Y1= L2 - a2(p:  + p ; ,  - a4y2( u2 - 1 ) (  1 - u2) + 47472 

1 

(A2.9) 

1 x (u2- u2)(aZ, , -q~4y2)-a4y2(u2-u2)(u2-1)(1 - u 2 )  

= Wl - 2a2H + a 2 X 2  

and 

(A2.10) 

The wavefunctions (A2.3), to be denoted by ( L n v i m (  U, U, cp), are the common eigenfunc- 
tions of the complete set of commuting operators { H, Yl , Y2},  corresponding to the 
eigenvalues E N ,  f . ( i )  and M 2  + ( a - 2  - l)qv4y2. 

In the case of oblate spheroidal coordinates U, U, cp(0s U < +a, -1  s u s  + 1, 
0 s cp < 27r), defined by 

x=a[ (u2+1) (1-u2) ]1~2COS cp y = a [ ( u 2 +  1 ) ( 1 -  u 2 ) ] I i 2  sin cp 
(A2.11) 

the Schrodinger equation and the wavefunctions can be obtained from the correspond- 
ing results in prolate spheroidal coordinates by substituting iu for U, and -ia for a. 
Hence we shall not detail them here. Note however that, the range of U being different 

z = auu 
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in both coordinate systems, the wavefunction normalisation will be affected by the 
substitution. The two integrals of motion are now (Makarov et a1 1967) 

(A2.12) 2, = W, + 2a2 H - a 2 X 2  

and 

zz= Y2 (A2.13) 

and their eigenvalues are again 5'" and M Z  + ( a - 2  - l )qv4y2.  
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